Снятие напряжений после сварки

Содержание

Термическая обработка сварных соединений

Снятие напряжений после сварки

В термическую обработку сварных изделий входит термическая подготовка деталей перед сваркой, термическая обработка в процессе сварки и термическая обработка готового сварного изделия. Термическая подготовка деталей перед сваркой выполняется для улучшения свариваемости металла.

Поэтому свариваемую сталь перед сваркой рекомендуется подвергать отжигу или высокому отпуску, режимы которых зависят от состава стали.

Выбор теплового режима сварки зависит от свойств свариваемых металлов и сплавов, жесткости конструкции и состояния ее при сварке. При сварке черных металлов термический режим состоит в подогреве сваривае мых деталей.

Причем для стали чем выше склонность ее к закатке и трещинам, тем выше должна быть температура подогрева.

Термическая обработка после сварки проводится для снятия напряжений, полученных в результате сварки и для улучшения механических свонств При сварке применяют следующие виды термической обработки.

Отжиг для снятия внутренних напряжений. После сварки изделие помещают в нагревательную печь, нагрев осуществляют постепенно Для низко- и среднеуглеродистых сталей температура нагрева достигает 600—680°С. После нагрева изделие выдерживают в печи при этой температуре в течение 2,5 мин на 1 мм толщины металла, и охлаждают вместе с печью.

Для полного отжига стальное изделие нагревают до температуры 820—930°С, выдерживают при этой температуре и затем медленно охлаждают. Время выдержки изделия при данной температуре такое же, как и при отжиге для снятия напряжений, но не менее 30 мин. Затем изделие охлаждают вместе с печью со скоростью 50—75°С в час до температуры 300°С, после чего его вынимают из печи и охлаждают на воздухе. При полном отжиге устраняются внутренние напряжения и улучшается структура металла. Металл становится мелкозернистым и более пластичным.

Нормализация — это термическая обработка, подобная отжигу, но с более быстрым охлаждением изделий, которое обычно проводят на воздухе. При нормализации сварное изделие нагревают до температуры 850—900°С, выдерживают при этой температуре и затем охлаждают на воздухе. В этом случае металл шва и околошовной зоны приобретает мелкозернистую структуру, повышается его прочность и твердость.

Отпуск применяется для сталей, склонных к закалке, для уменьшения внутренних напряжений и хрупкости. Изделие нагревают до температуры 400—700°С, выдерживают при этой температуре из расчета 2,5 мин на 1 мм толщины металла, медленно охлаждают вместе с печью до нормальной температуры. Поскольку изделия в этом случае нагреваются до температуры, лежащей ниже критической (723°С), структурных изменений в сварном шве и околошовной зоне не происходит.

Для каждой марки стали существуют свои режимы отпуска и скорости охлаждения, которые указываются в технических условиях на термообработку. Нагрев для термической обработки может производиться в печах, горнах, ямах, а также с помощью индукторов. Для местного нагрева применяют сварочные горелки. Местный нагрев пламенем сварочной горелки используют также для правки изделий после сварки.

Мощность горелки берут из расчета 300 дм3/ч на 1 мм толщины нагреваемого металлла. Сварочным пламенем нагревают выпуклую часть изделия, которую необходимо выправить При нагреве металл стремится расшириться, но этому препятствуют его холодные части, в металле возникают напряжения сжатия, вызывающие деформацию сжатия.

При охлаждении на этом участке возникают обратные напряжения растяжения, которые и выпрямляют изделие.

Подогревают стальные изделия до 650—900°С, что соответствует темно-красному цвету. Скорость перемещения пламени при нагреве — 500—600 мм/мин. Чем быстрее выполняется нагрев, тем успешнее проводится процесс правки изделия.

Контакты

Компания ООО Ксирон-ХолодРоссия г. Ивантеевка, Санаторный проезд, дом 1, корпус 23, 141281 Почтовый адрес: Санаторный проезд, дом 1, г.Ивантеевка, Московская область, 141281Телефон: (495) 984-74-92; (495) 226-51-87;Email: info@xiron.ruМы работаем ежедневно с 9:00 до 18:00, кроме выходных.Прием заявок на сайте — круглосуточно ИНН 5038123297 ОГРН 1165038054565 E-mail: Отправить заявкуОтзывы/СертификатыПостроить маршрут с помощью: Яндекс картыДоставка: осуществляем отправку оборудования по России и в страны СНГ.

Схема проезда

Источник: http://www.xiron.ru/content/view/30358/28/

Pereosnastka.ru

Снятие напряжений после сварки

Способы уменьшения сварочных деформаций м напряжений

Категория:

Сварка металлов

Способы уменьшения сварочных деформаций м напряжений

Сварочные деформации вследствие изменения размеров и формы конструкций существенно затрудняют их сборку, ухудшают внешний вид и эксплуатационные качества. Сварочные напряжения снижают сопротивляемость сварных конструкций разрушению, особенно при воздействии циклических нагрузок и агрессивных сред. Поэтому применяют различные способы уменьшения или устранения сварочных деформаций И напряжений.

Мероприятия по уменьшению деформаций и напряжений могут осуществляться на разных стадиях изготовления конструкции: до сварки — на стадии проектирования конструкции и технологии производства, во время и после сварки.

Мероприятия, применяемые преимущественно для снятия сварочных напряжений, влияют на деформации и, наоборот, мероприятия, применяемые преимущественно для уменьшения деформаций, влияют на величину напряжений. Рассмотрим основные способы уменьшения сварочных деформаций и напряжений.

Уменьшение остаточных сварочных напряжений. Способы уменьшения остаточных напряжений делят на термические, механические и термомеханические. Наиболее эффективно снятие остаточных напряжений способами, осуществляемыми после сварки.

К термическим способам „относят предварительный и сопутствующий подогрев во время сварки и высокий отпуск после сварки.

Подогрев снижает предел текучести металла в момент сварки, что и влияет на формирование и величину остаточных напряжений. Снижение напряжений при низкотемпературном подогреве (до 200—250 °С) составляет ориентировочно не более 30—40%.

Общий высокий отпуск является наиболее эффективным методом уменьшения остаточных напряжений, так как позволяет снизить напряжения на 85—90% от исходных значений и одновременно улучшить пластические свойства сварных соединений. Высокий отпуск состоит из нагрева (для стали до температуры около 650 °С), вьщержки (2—4 ч) и медленного охлаждения.

Местный отпуск применяют для снятия пиковых величин остаточных напряжений и восстановления пластических свойств сварных соединений. При местном отпуске нагревают до заданной температуры лишь часть конструкции.

Рис. 1. Распределение остаточных сварочных напряжений в стыковом соединении

Поэлементный отпуск состоит в том, что при монтаже крупного баритных конструкций подвергают отпуску отдельные узлы кон струкции, включающие зоны и элементы, где отпуск необходим а затем эти узлы сваривают между собой чаще всего встык с полным проваром без концентраторов. Обычно в этих соединениях предусматривают снятие напряжений местными способами (термическими или механическими).

Механические способы (проковка, прокатка, вибрация, взрывная обработка, ультразвуковая обработка, приложение нагрузки к сварным соединениям) основаны на создании пластической деформации металла сварных соединений, вследствие чего происходит снижение растягивающих остаточных напряжений.

Металл проковывают непосредственно после сварки по горячему металлу или после его остывания. Основное преимущество этого метода заключается в простоте применяемого оборудования, универсальности и оперативности.

Прокатка обеспечивает более равномерную пластическую деформацию металла по сравнению с проковкой и в основном предназначена для устранения остаточных деформаций.

Читайте также  Электронно лучевая сварка

Приложение нагрузки к сварным соединениям осуществляют растяжением или изгибом элементов. Суммирование остаточных и приложенных напряжений вызывает пластические деформации удлинения и после снятия нагрузки снижение максимальных напряжений.

Наряду с рассмотренными механическими методами для снятия напряжений начинают использовать вибрацию, ультразвуковую и взрывную обработку.

Термомеханические способы основаны на одновременном протекании тепловых и механических процессов.

Способы уменьшения сварочных деформаций. Все мероприятия по уменьшению деформаций можно разделить на три группы в зач висимости от того, применяют ли их до сварки, в процессе сварки или после нее.

Мероприятия, применяемые до сварки.

1. Рациональное конструирование сварного изделия, которое включает: – уменьшение количества наплавленного металла и соответственно количества вводимого при сварке тепла за счет уменьшения сварных швов и их сечений; – избежание скоплений и перекрещиваний швов; – симметричное расположение швов для уравновешивания деформаций; – симметричное расположение ребер жесткости, накладок, косынок и т. д. и их минимальное использование.

2. На стадии разработки технологии целесообразно предусматривать: – размеры и форму заготовок с учетом величины возникающих прй сварке усадок; – предварительную деформацию заготовок, которая была бы противоположной ожидаемой сварочной деформации; – правильный выбор вида сварки, учитывая, что деформации при ручной сварке, как правило, больше, чем при автоматической, а деформации при сварке под флюсом больше, чем при сварке в углекислом газе.

Мероприятия, применяемые в процессе сварки:- – снижение погонной энергии при назначении более экономичных режимов; – искусственное охлаждение зоны сварки, например, водой, водо-охлаждаемыми медными накладками и т. д.

для уменьшения зоны нагрева и соответственно сварочных деформаций; – закрепление свариваемых изделий в жестких приспособлениях; применение многослойных швов вместо однослойного, проковка швов после каждого прохода; – рациональная последовательность сварки для уравновешивания деформаций, применение обратноступенчатого способа сварки, заключающегося в том, что всю длину шва разбирают на отдельные ступени и сварку каждой ступени выполняют в направлении, обратном общему направлению сварки.

Мероприятия, применяемые после сварки: механическая правка сварных изделий для создания пластических деформаций, обратных сварочным, путем растяжения, изгиба, местного деформирования проковкой, прокаткой роликами, осадкой металла по толщине под прессом и др.; – тепловая правка местным нагревом. Расширяющийся при местном нагреве металл осаживается прилегающим холодным металлом, поэтому после охлаждения размеры нагретого участка уменьшаются, что приводит к устранению местных деформаций (хлопунов, выпучин и т. д.); – высокий отпуск деталей в зажимных приспособлениях.

Реклама:

Прочность сварных соединений и конструкций

Источник: http://pereosnastka.ru/articles/sposoby-umensheniya-svarochnykh-deformatsii-m-napryazhenii

Как избежать деформаций при сварке? Способы устранения сварочных деформаций

Снятие напряжений после сварки

>>Качество и контроль сварки>>Деформации и напряжения при сварке

Статья «Как избежать деформаций при сварке? Способы устранения сварочных деформаций» является заключительным продолжением для статей «Деформации и напряжения при сварке. Причины сварочных деформаций и напряжений» и «Виды деформаций и напряжений при сварке».

Для уменьшения внутренних деформаций и напряжений применяют ряд технологических приёмов по технике и очерёдности выполнения швов и их расположению, по выбору правильной конструкции изделия, по выбору режимов ручной дуговой сварки (или другого способа сварки).

Меры по предотвращению сварочных деформаций

Одним из способов устранения сварочных деформаций является сварка в кондукторах — специальных приспособлениях, позволяющих жёстко закрепить изделие. Кроме этого, часто применяют предварительную деформацию свариваемых деталей. Направление предварительной деформации должно быть противоположно ожидаемой деформации при сварке. Такая мера называется ещё методом предварительного изгиба.

Такой метод используют для предотвращения угловых деформаций при сварке угловых швов и при сварке нахлёсточных соединений. При сварке листового металла малой ширины, их выгибают в сторону, обратную от предполагаемой деформации.

В случае сварки листов большой ширины, их сварные кромки предварительно изгибают. Для предотвращения деформаций при сварке тавровых и двутавровых соединений, их закрепляют в приспособления, которые изгибают детали в сторону, обратную предполагаемой деформации.

Техника сварки, позволяющая избежать сварочных деформаций

Существуют разные варианты техники сварки, позволяющие уменьшить сварочные напряжения и поводки. При выполнении сварочных швов большой длины, используют обратноступенчатый способ сварки на проход (схема а) на рисунке слева). При выполнении многослойной сварки, наплавляются каскадные сварные швы, или горкой. Каждый из этих слоёв (кроме первого и последнего) проковывают.

Кроме этого, сварные швы выполняются таким образом, чтобы каждый последующий шов вызывал напряжения, противоположные напряжениям от предыдущего шва (схемы б) и в) на рисунке слева).

Последовательность сварки не должна препятствовать возможной свободной деформации сварной металлоконструкции. Например, при сварке листового настила из металлических полос, необходимо, в первую очередь, сваривать листы в каждом слое настила, а затем сваривать слои между собой (см. рисунок справа).

При сварке вязких материалов, применяют способы сварки, позволяющие снизить остаточные напряжения. К таким способам относятся закрепление свариваемой детали в специальных приспособлениях. В таких приспособлениях свариваемые детали собирают, сваривают и остужают.

Кроме этого, применяют различные приёмы, позволяющие быстро отводить тепло от сварного изделия, например, при охлаждении под струёй воды, или отвод теплоты с помощью медных подкладок.

Если свариваемый металл склонен к формированию закалочных структур, то резкое охлаждение сварного шва и зоны термического влияния приводит к возникновению внутренних напряжений и образованию холодных трещин в металле.

Для того, чтобы уменьшить перепад температур в металле, пред сваркой выполняют предварительный подогрев. Если сварочные работы ведутся при низких температурах, то подогрев обязателен даже если выполняется сварка низкоуглеродистых сталей.

Отпуск после сварки для снятия напряжений

При сварке углеродистых конструкционных сталей выполняют общий высокотемпературный отпуск. Для этого сварное изделие нагревают до температуры 630-650°C, выдерживают при этой температуре и охлаждают. Время выдержки определяется из расчёта 2-3мин на миллиметр толщины металла.

Охлаждение сварного соединения должно происходить медленно, чтобы при остывании вновь не возникли внутренние напряжения. Скорость охлаждения стали определяется, в зависимости от её химического состава. Чем больше в составе стали присутствует элементов, способствующих закалке, тем меньше скорость охлаждения при отпуске после сварки. Часто сварное соединение охлаждают вместе с печью до температуры 300°C, а затем на обычном воздухе.

Отжиг для устранения внутренних напряжений

Отжиг для устранения напряжений и деформаций при сварке выполняется полный или низкотемпературный. При полном отжиге сварное изделие нагревают до температуры 800-950°C, выдерживают и охлаждают вместе с печью. После такого отпуска вязкость и пластичность сварного шва увеличивается, а твёрдость уменьшается.

При низкотемпературном отпуске сварное соединение нагревают до температуры 600-650°C и охлаждают вместе с печью. При таком отпуске, нагрев металла происходит до температур, ниже критических, поэтому, преобразований в кристаллической структуре металла не происходит.

Аргонодуговая обработка для снятия остаточных напряжений

Для снятия остаточных напряжений и деформаций после сварки применяют аргонодуговую обработку. Суть её заключается в том, что переходную зону от сварного шва к основному металлу расплавляют неплавящимся электродом в среде аргона.

При расплавлении этой переходной зоны напряжения, действующие между металлом шва и основным металлом, исчезают. При кристаллизации, они появятся вновь, но их величина будет намного меньше изначальной. Такой способ позволяет снизить остаточные напряжения до 70%.

Кроме снижения напряжений, этот метод позволяет получить плавный переход от шва к основному металлу и это существенно увеличивает прочность конструкции.

Проковка сварного шва с целью уменьшения напряжений и устранения деформаций

Если в металле шва или близлежащих областях металла создать дополнительные пластические деформации, то можно полностью устранить остаточные напряжения и деформации при сварке. Для этого выполняют проковку сварных швов.

Читайте также  Полуавтомат сварочный для кузовных работ

https://www.youtube.com/watch?v=—Epon389EE

Проковывают сварное соединение во время его остывания при температурах выше 450°C, либо ниже 150°C. При температурах от 200°C до 400°C проковку не выполняют из-за повышенного риска образования надрывов.

Проковывают швы вручную, молотком, массой около 1кг. Допускается применять пневматический молоток. В случае выполнения многослойных швов, не выполняют проковку последнего слоя и первого, на котором от ударов возможно образование трещин. Таким способом снимают напряжения в металле при заварке дефектов или при выполнении замыкающего сварного шва.

Термическая правка металла

Для устранения сварочных деформаций может применяться термическая правка, при которой нагрев сварного соединения происходит газовым пламенем, либо электрической дугой от неплавящегося электрода. При термической правке металл нагревается до температуры 750-850°C и начинает стремительно расширяться. Но, окружающие его холодные слои металла препятствуют его расширению и вызывают пластическую деформацию данного участка. При охлаждении, металл нагретого участка сжимается, и в нём происходит частичное или полное устранение деформаций.

Механическая правка сварного соединения

При сварке тонкого металла (до 3мм) правка производится вручную, с помощью молотка. При больших толщинах металла применяют прессы. Этот способ устранения сварочных деформаций не нашёл широкого применения, т.к. термическая правка является более целесообразным способом.

После механической правки на поверхности металла остаётся местный наклёп и предел текучести на этом участке повышается. При этом, пластичность стали снижается. Подобная неоднородность механических свойств негативно отражается на статической прочности всей металлоконструкции и при её работе под переменными нагрузками.

Дополнительные материалы по теме:

Источник: https://taina-svarki.ru/kachestvo-i-kontrol-svarki/kak-izbezhat-deformatsiy-pri-svarke.php

Способы и технология для снятия напряжение металла после сварки

Снятие напряжений после сварки

Участки свариваемых деталей, расположенные в зоне и вокруг шва, подвергаются неравномерным температурным перепадам — моментально нагреваются до состояния плавления и интенсивно остывают. Вследствие таких процессов металл сначала начинает расширяться.

Он оказывает воздействие на ближайшие зоны, имеющие совсем другую температуру. Влияние расширяющейся стали будет выше, чем меньше теплопроводность металла. В результате возникает мощные напряжения, приводящие к деформации материала.

Они негативно влияют на результат работы, поэтому необходимо понимать, каким образом снять напряжение металла после сварки.

Остаточные напряжения

В металле напряжения возникают во время сварки и по завершению процесса. В последнем случае они формируются по мере охлаждения детали и называются остаточными. Такие напряжения практически во всех конструкционных материалах присутствуют в течение всего эксплуатационного периода.

Они представляют наибольшую опасность для изделий, так как являются причиной изменения габаритов и формы деталей. Поэтому так важно снять напряжение в металле после сварки. Это позволит исключить вероятность изменения внешнего вида изделия и уменьшить степень снижения его эксплуатационных характеристик.

Если же остаточные напряжения в материале слишком большие, то существует вероятность, что деталь невозможно будет использовать.

Формоизменение изделий, изготовленных с помощью сварки, происходит из-за перемещения соединенных элементов, так как в каждой точке металла появляются деформации. Существуют несколько видов изменения формы:

  • продольные укорочения, образующиеся в результате усадки в одноименном направлении;
  • изгиб плоскости;
  • поперечные укорочения; возникающие тоже в результате усадки в соответствующем направлении;
  • угловые деформации, когда выполняются тавровые и стоковые сочленения;
  • формоизменения балочных конструкций, происходящие из-за деформации поперечных и продольных сварочных швов (в редких случаях происходит закручивание балок).

Чтобы избежать изменения формы изделия любого типа нужно конкретно знать, как снять напряжение в металле после сварки. Существует несколько способов. Приемы применяются одновременно или по отдельности.

Термообработка

Одним из вариантов снятия напряжения является высокотемпературный отпуск. Техническое мероприятие применяется во время сочленения углеродистых сплавов. Оно осуществляется за счет нагрева до 630-650 °C. После выдержки температуры, длящейся 2-3 минуты на 1 мм толщины стали, деталь охлаждается.

Снижение температуры изделия проводят медленно. Это позволяет избежать повторного образования напряжения. Скоростной параметр зависит от состава металла. Он уменьшается с увеличением в сплаве элементов, влияющих на его закалку.

Аргонодуговой прием

Смысл аргонодуговой обработки состоит в расплавление участка, находящегося между сварным швом и основным металлом. Процесс выполняется неплавящимся электродным стержнем в аргоновой среде. Такое воздействие позволяет избавиться от напряжений в переходной зоне. Однако в дальнейшем происходит кристаллизация, в результате которой они снова появляются. Величина вновь появившихся напряжений существенно меньше начальных значений. Разница достигает 70%.

Совет! Используя такой прием можно не только уменьшить напряжение, но и получить плавный переход на участке, расположенным между швом и металлом конструкции. Благодаря этому у металлоконструкции повышается прочностная характеристика.

Проковка сварочного шва

Технологическая операция проводится с целью создания дополнительных деформаций. Они позволяют полностью избавиться от остаточных напряжений. Проковка осуществляется, когда сочленение остывает. Мероприятие проводится, если температура превышает 450 °C. Проковывать соединение также можно при температурном режиме меньше 150 °C. В других случаях процесс не выполняется, так как существует риск появления надрывов.

Операция проводится ручным методом при использовании молотка. Его масса составляет в среднем 1000 г. Разрешено применять пневматический молоток. Когда осуществляется проковка многослойных сочленений, мероприятие не проводится для 1-го и последнего слоя, так как существует большая вероятность образование трещин. Способ позволяет избавиться от напряженного состояния во время устранения дефектов и при создании замыкающего сочленения.

Механическая правка шва

Сваривая металл толщиной до 3 мм, правка осуществляется ручным способом при использовании молотка. Для стали, имеющей большую толщину, применяется пресс. Механическая правка используется крайне редко. Вместо нее чаще применяют термический способ.

Особенностью механической правки является появление на металле налета. У обработанного участка возрастает текучесть, и снижается пластичность металла. Изменения свойств стали приводят к уменьшению прочности конструкции.

Термическая правка

Этот метод подразумевает под собой нагрев сочленения при использовании газового пламени. Может также применяться электродуга, образующаяся от неплавящегося электродного стержня. Нагрев материала осуществляется до 750-850 °C. Затем происходит быстрое расширение сплава. Однако рядом расположенные слои не дают металлу расширяться. Из-за этого возникает пластическая деформация нагретой зоны. Когда происходит охлаждение, предварительно нагретый участок начинает сжиматься. В итоге деформация полностью или частично устраняется.

Зная, как снять напряжение металла после сварки, удастся уменьшить вероятность снижения прочности сварных конструкций. Это особенно важно в условиях, которые способствуют появлению хрупкого разрушения шва. Используя вышеописанные методы, удается избежать дефектов при эксплуатации сварной металлоконструкции.

https://www..com/watch?v=peJ5NMXYuKg

Источник: http://solidiron.ru/obrabotka-metalla/svarka/priemy-pozvolyayushhie-snyat-napryazhenie-metalla-posle-svarki.html

Снятие напряжений после сварки

Снятие напряжений после сварки

Подробности Подробности 13.10.2015 15:24 3530

Из литературных источников и сообщений в Интернете известно об успешном применении вибрации в процессе сварки. Такая технология позволяет получить более качественный шов и значительно снизить поводки конструкций.

В ОАО «Силовые машины»—«Электросила» для снятия напряжений после сварки широко применяется технология виброобработки.

Для проверки возможности использования имеющейся на предприятии виброустановки «ЭЛВИС-Т3» непосредственно при выполнении сварочных операций отделом сварки совместно с лабораторией металлов ЦЗЛ проведено специальное исследование.

Исследование состояло из двух этапов. На первом этапе оценивалось влияние вибрации на геометрическую стабильность сварной детали. На втором этапе исследовано влияние вибрации на микроструктуру шва и его механические свойства.

Ниже изложены результаты исследований, выполненных в соответствии с этими этапами.

Читайте также  Сварочный экструдер своими руками

Влияние вибрации на геометрическую стабильность

Исходно планировалось провести сравнение поводок при сварке образцов по двум режимам.

Режим 1 — нанести поперечный шов на пластину из Ст.  3 толщиной 10 мм, шириной 100 мм, длиной 250 мм. Концы пластины предварительно прихватить к опорной плите. После остывания шва удалить прихватки и замерить величину деформации (зазор между пластиной и плитой по концам пластины).

Режим 2 — выполнить те же самые операции, но с наложением вибрации на опорную плиту.

По изменению величины поводки пластины предполагалось сделать вывод о влиянии вибрации.

В качестве опорной плиты использован металлический стол (толщина столешницы 20 мм). Под ножки стола укладывались амортизаторы. Вибратор крепился непосредственно к столу струбцинами.

До начала сварочных работ был выбран дисбаланс вибратора, рабочие частоты и определено место проведения сварочных работ на столе.

Сварка всех образцов выполнялась в дальнейшем именно на этом месте.

Использована полуавтоматическая сварка в среде СО2.

На первом образце сварка произведена без вибро-обработки.

Было обнаружено, что после остывания образца и удаления прихваток деформация пластины отсутствовала (в рамках точности измерения линейкой и штангель-цир-кулем). Очевидно, что величина остаточных напряжений после нанесения шва недостаточна, чтобы вызвать сколько-нибудь значимую деформацию образца.

С учетом полученного результата схема эксперимента была изменена.

Пластина укладывалась на стол и прихваткой фиксировался только один ее конец. Затем посередине пластины наносился поперечный шов шириной ≈20 мм — с вибрацией и без нее.

Внешний вид шва показан на рис. 1, а. Верхняя часть шва (где вырезался шлиф) является его конечной частью.

Вибрация создавалась вибратором на двух частотах — 78,3 Гц (4700 об/мин) и 88,3 Гц (5300 об/мин). На этой стадии эксперимента виброускорение не измерялось, так как требовалось определить принципиальную возможность использования вибрации при сварке.

После остывания пластины измерялся при помощи щупов зазор δ (в двух точках по ширине — вблизи боковых кромок):

Полученные результаты сведены в таблицу 1. Зазор δ есть средняя величина от двух измерений.

При нанесении шва на образец 4 была изменена схема его закрепления — половина образца нависала консольно над плитой:

Из таблицы 1 следует, что вибрация при сварке способствует деформированию металла под действием напряжений. Соответственно, можно предполагать, что остаточные напряжения ниже в образцах, где сварка выполнена с вибрацией — наличие остаточных напряжений привело к дополнительной деформации металла под действием этих напряжений и, тем самым, к их релаксации.

Увеличение интенсивности вибрации привело к увеличению зазора δ, то есть к увеличению деформации металла (ср. образцы № 2 и 3, табл. 1), что, возможно, свидетельствует о более полном снятии остаточных на пряжений.

Зазор δ уменьшился на образце № 4 вследствие изменения схемы вибрации: в предыдущих случаях (образцы № 2, 3) пластина опиралась на стол всей поверхностью и при колебаниях могла смещаться только вверх; при консольном расположении свободный конец перемещался при колебаниях и вверх, и вниз, что привело к уменьшению зазора по сравнению с предыдущими образцами.

Внешний вид наплавленного шва на образцах с вибрацией несколько отличался от шва с традиционной наплавкой: участки шва более плоские и меньше по толщине. Это видно на фотографиях рисунка 1.

Предварительное исследование микроструктуры на-плавленного металла показало некоторое отличие швов с вибрацией и без таковой.

Также характерным для всех образцов с вибрацией, как отмечалось выше, является общее уменьшение толщины наплавленного металла в зоне отрезки шлифов. Более детальный анализ микроструктуры выполнен на втором этапе работы.

Исследование влияния вибрации на микроструктуру шва и его механические свойства

На этом этапе технология сварки была несколько изменена по сравнению с предыдущим этапом.

Сварка образцов (пластин толщиной 20 мм из Ст. 3 сп2) производилась на металлическом столе, на котором был закреплен вибратор установки «ЭЛВИС-Т3». Стол выставлялся на резиновые амортизаторы. После опробования нескольких режимов вибрации все сварные работы выполнялись при скорости вращения вибратора 4450 об/мин (=74,2 Гц). Схема сварки с вибрацией показана ниже (вид сверху):

Пластины крепились к столу точечной сваркой в двух местах каждая (см. схему). Вибрация измерялась штатным виброметром ВВМ-201 в единицах виброускорения. Колебания стола по длине пластин имели различную интенсивность, увеличиваясь от зоны 3 к зоне 1.

В зоне 1 виброускорение составило 155 м/с2 (=16 g), в зоне 3 — 110 м/с2 (=11 g). Таким виброускорениям соответствуют амплитуды колебаний 0,8 мм и 0,6 мм соответственно.

Было проведено сравнительное исследование трех вариантов сварки: сварка без вибрации; сварка с вибрированием стола согласно вышеприведенной схемы; сварка с вибрированием стола и одновременным вибрированием держателя проволоки, для чего к держателю проволоки хомутом крепился упор, все время касавшийся вибрировавшего стола.

Сварка выполнялась специалистом лаборатории сварки в полуавтоматическом режиме с одинаковыми параметрами для всех вариантов.

После проведения сварки из полученных образцов изготовлены поперечные шлифы области шва из зон № 1 и 3, а из зоны 2 изготовлены поперечные образцы на растяжение (по два образца на каждый вариант):

После изготовления шлифы подвергнуты травлению 4%-ным раствором азотной кислоты.

Дополнительное вибрирование электрода (по сравнению с вибрированием стола) не отразилось на микроструктуре шва, поэтому в дальнейшем сравнение производилось между швами, полученными без вибрации и с наложением вибрации (не выделяя отдельно режим с дополнительным вибрированием электрода).

Макроизображения шлифов приведены на рисунках 2 и 3.

Из анализа изображений следует, что сварные швы несколько различаются между собой по форме и размерам наплавленного за отдельный проход металла.

Видимо, колебания тока и некоторое различие в положении проволоки при проходах шва из-за влияния субъективных факторов привели к таким различиям.

Соответственно, отмеченная неоднородность затрудняет сравнительный анализ.

Для снижения влияния неоднородности режимов на шлифах выбирались по два сопоставимых участка: один — в зоне сплавления вблизи корня шва, нанесенного при втором проходе (=примерно посередине толщины листа), другой — у поверхности металла по центру последнего шва.

Участки микроструктурного анализа показаны красными прямоугольниками на макроизображениях швов (на рис. 2 и 3).

Микроструктурный анализ выполнялся на оптическом микроскопе Union (Япония) с увеличением × 50 с последующей фотосъемкой шлифов цифровой камерой через объектив микроскопа.

Фотографии соответствующих участков приведены на рис. 4–7.

Можно выделить несколько характерных отличий в швах, полученных с вибрацией: — уменьшение зоны термического влияния (ЗТВ) с 2–2,2 мм (рис. 4) до 1–1,2 мм (рис. 6); — большая структурированность литого металла (зерна меньшей толщины и ориентированы более четко по линиям кристаллизации); — уменьшение контрастности линии сплавления (менее резкий переход от ЗТВ к литому металлу).

Наибольшее отличие имеют участки у поверхности металла (рис. 5 и 7).

Наряду с несколько большей структурированностью металла «виброшвов» (зерна более четко ориентированы по вертикали) резко отличается пористость стали — шов без вибрации содержит гораздо больше газовых пор, чем «вибро-швы».

Очевидно, наличие вибрации облегчает выход газов из расплавленного металла.

Возможно, облегченный отвод газов при вибрации способствует более эффективному охлаждению застывающего металла, что, в свою очередь, приводит к уменьшению зоны термического влияния.

Кроме того, уменьшение зоны термического влияния при вибрации может быть обусловлено увеличением скорости кристаллизации жидкого металла вследствие образования большего количества центров кристаллизации.

Источник: https://ccm-msk.com/snyatie-napryazheniy-posle-svarki/